Impairments in musical abilities reflected in the auditory brainstem: evidence from congenital amusia

Alexandre Lehmann,1,2,3 Erika Skoe,4,5,6 Patricia Moreau,1,2 Isabelle Peretz1,2 and Nina Kraus7,8,9,10

1International Laboratory for Brain, Music and Sound Research (BRAMS), Center for Research on Brain, Language and Music (CRBLM), Pavilion 1420, Montreal, QC H3C 3J7, Canada
2Department of Psychology, University of Montreal, Montreal, QC, Canada
3Department of Otolaryngology Head & Neck Surgery, McGill University, Montreal, QC, Canada
4Department of Speech, Language and Hearing Sciences, University of Connecticut, Storrs, CT, USA
5Department of Psychology Affiliate, University of Connecticut, Storrs, CT, USA
6Cognitive Science Affiliate, University of Connecticut, Storrs, CT, USA
7Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA
8Department of Communication Sciences, Northwestern University, Evanston, IL, USA
9Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, USA
10Department of Otolaryngology, Northwestern University, Evanston, IL, USA

Keywords: auditory system plasticity, cABR, human brainstem, music experience, tone-deafness

Abstract

Congenital amusia is a neurogenetic condition, characterized by a deficit in music perception and production, not explained by hearing loss, brain damage or lack of exposure to music. Despite inferior musical performance, amusics exhibit normal auditory cortical responses, with abnormal neural correlates suggested to lie beyond auditory cortices. Here we show, using auditory brainstem responses to complex sounds in humans, that fine-grained automatic processing of sounds is impoverished in amusia. Compared with matched non-musician controls, spectral amplitude was decreased in amusics for higher harmonic components of the auditory brainstem response. We also found a delayed response to the early transient aspects of the auditory stimulus in amusics. Neural measures of spectral amplitude and response timing correlated with participants’ behavioral assessments of music processing. We demonstrate, for the first time, that amusia affects how complex acoustic signals are processed in the auditory brainstem. This neural signature of amusia mirrors what is observed in musicians, such that the aspects of the auditory brainstem responses that are enhanced in musicians are degraded in amusics. By showing that gradients of music abilities are reflected in the auditory brainstem, our findings have implications not only for current models of amusia but also for auditory functioning in general.

Introduction

Congenital amusia is a disorder affecting 2.5% of the population, characterized by a deficit in music perception and production. The deficits cannot be explained by hearing loss, frank brain lesions, intellectual deficiencies or lack of exposure to music (Stewart, 2011; Peretz, 2013). Despite their inferior performance on musical tasks, particularly those involving fine-grained pitch discrimination (e.g. Peretz et al., 2002), amusics exhibit normal pre-attentive auditory cortical responses to pitch changes. Specifically, early components of cortical event-related potentials (MMN and N200) to eighth-tone pitch deviations are normal, whereas the later P300/600 component, associated with conscious detection of pitch deviations, is absent (Moreau et al., 2009; Peretz et al., 2009). Anatomical anomalies, such as increased cortical thickness in the right temporal and inferior frontal gyrus (Hyde et al., 2007) and reduced arcuate fasciculus connectivity (Loui et al., 2009) have linked musical impairments in congenital amusia to a disturbed fronto-temporal network of cortical regions implicated in musical processing (Hyde et al., 2011).

However, recent evidence suggests that early auditory cortical responses – indexed by the magnetencephalography component N100 m – are diminished in amusics (Albouy et al., 2013; see also Omigie et al., 2013). Yet to date, there is no evidence of subcortical anomalies in congenital amusia – (Cousineau et al., 2015). Current research on subcortical responses shows a relationship between musical training and expertise and sound processing at the brainstem (reviewed by Kraus & Chandrasekaran, 2010; Strait & Kraus, 2014), suggesting that musical impairments might likewise affect complex auditory brainstem responses (cABRs). Musicians, both young and old, show enhanced encoding of harmonics compared with non-musicians (Musacchia et al., 2008; Strait et al., 2011; Parbery-Clark et al., 2012; Skoe & Kraus, 2013) as well as earlier responses to the onset and temporally dynamic components of sound (Musacchia et al., 2007; Strait et al., 2014) compared with non-musicians. This observed enhancement correlates with the extent

Correspondence: Dr I. Peretz, BRAMS, as above.
E-mail: isabelle.peretz@umontreal.ca
Received 5 January 2015, revised 16 April 2015, accepted 16 April 2015

© 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
and onset of musical experience (Muscacchia et al., 2007; Wong et al., 2007) and with music aptitude across musically trained and untrained individuals (Strait et al., 2011). The corticofugal system, a network of efferent fibers linking cortical to subcortical auditory structures, is also stronger in musicians (reviewed by Perrot & Collet, 2014), suggesting that the corticofugal system plays a role in mediating music-related subcortical plasticity (Kraus & Chandrasekaran, 2010).

Here we investigated whether congenital amusia is associated with subcortical anomalies. Because cABRs are enhanced in musicians, we predicted that musical disorders would also exert an effect on those responses, through a cortical anomaly that has led over time to impaired cABRs via top-down, corticofugal influences (Rebuschat et al., 2012). To test this possibility, we recorded cABRs in congenital amusic adults and non-musician controls. We expected that group differences would parallel those observed between non-musicians and musicians. In other words we expected that the components of the brainstem response that are enhanced in musicians to be weaker in amusics. As is the case for musicians, we also predicted a relationship between the degree of manifestation of the disorder and the temporal and spectral characteristics of the subcortical response.

Methods

The experimental procedures conformed to the World Medical Association’s Declaration of Helsinki and were approved by the Research Ethics Committee of the Faculty for Arts and Sciences of the University of Montreal.

Participants

Ten congenital amusics and 11 controls gave informed consent to participate in the experiment. Participants were categorized as amusic if their composite score on the Montreal Battery of Evaluation of Amusia (MBEA) was more than two standard deviations below controls (Peretz et al., 2003). The MBEA is the primary diagnostic tool for amusia; it is a normed test consisting of six tests using the same pool of 30 novel musical melodies. Each test is a two-alternative forced choice that assesses the functioning of the various processing components involved in Western tonal music, including melody, rhythm, meter and memory. Table 1 shows MBEA global score, audiometry and demographic information for the two groups.

All participants were submitted to an audiological evaluation and click-evoked ABR testing to assess their hearing. To be included in the study, participants were required to have age-appropriate hearing thresholds ≤ 40 dB normal hearing level at 2 kHz, ≤ 60 dB at 4, 6 and 8 kHz, and no more than 20 dB difference between ears at any two frequencies. Furthermore, a visible, above baseline wave V was required in the click ABR. Data from one control participant were excluded because of a noisy electroencephalogram (EEG) recording. Results are presented from the ten congenital amusics (three males) and the remaining ten matched control participants (one male). Both groups had minimal musical training, with an average of < 1.5 years.

<table>
<thead>
<tr>
<th>Table 1. Participant characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>Amusic</td>
</tr>
</tbody>
</table>

Means and standard deviations (in parentheses) are reported for the Control and Amusic groups. Pure-tone audiometric thresholds were averaged across three frequency bands (Low: 0.5, 1 kHz; Mid: 2, 3, 4 kHz; High: 6, 8 kHz).
confirm that the groups were matched, we then performed a $3 \times 2 \times 2$ repeated-measures analysis of variance (ANOVA) with frequency (Low, Mid, High) and ear (L, R) as within-subject factors and group (Amusic, Control) as between-subject factors and used a Greenhouse – Geisser correction.

Auditory brainstem response

Analysis of the brainstem EEG was conducted using custom software in MATLAB, as well as EEGLAB (Delorme & Makeig, 2004) and the Brainstem Toolbox (Skoe & Kraus, 2010). Responses were processed off-line by referencing to the average recording from the earlobes. They were then filtered from 100 to 1000 Hz (Butterworth filter, 12 dB per octave) to isolate the subcortical component of the EEG from the more low-frequency cortical component (Chandrasekaran & Kraus, 2010; Skoe & Kraus, 2010). The recordings were subsequently epoched with an interval of −10 to 90 ms for the /da/ sound and from −5 to 15 ms for the click. Trials with activity exceeding ±35 μV were considered artifacts and were excluded from the average. Across all participants, peak latencies were corrected to account for the delay introduced by the insert tubes and other equipment within the signal delivery chain. Separate averages were obtained for each stimulus polarity.

Added and subtracted responses to alternating polarities were computed to analyse both low- and high-frequency components of the neural response, respectively. Adding responses to alternating polarities maximizes low-frequency components of the response, including phase-locking to the (low-frequency) stimulus envelope; it also minimizes the cochlear microphonic and stimulus artifact (Skoe & Kraus, 2010). Subtracting emphasizes higher frequency components of the response but may accentuate artifact contamination (Aiken & Picton, 2008; Skoe & Kraus, 2010). Each individual subtracted waveform was visually inspected for both stimulus and cochlear microphonic artifacts and only subjects deemed by two raters to not have artifact contamination were included in the upper frequency analysis (>400 Hz) (six amusics and six matched controls). The stimulus and cochlear microphonic artifacts can be differentiated from the cABR by their earlier time signature.

Click responses were collected to assess the integrity of peripheral auditory pathway and to ensure that wave V latency, a commonly used audiological index (Hood, 1998), was matched between groups. All latency analyses were performed on the added response waveforms. Latency values were first extracted using a peak-picking algorithm and then refined based on observation (Skoe & Kraus, 2010).

Analysis of the responses to the /da/ stimulus followed published reports using similar stimuli and recording parameters (Russo et al., 2004). The primary dependent measures were: peak latency in the temporal domain and response amplitude encompassing frequencies of interest in the spectral domain. For the latency analysis, we first identified the prominent positive-going peaks in the grand average waveform created by averaging all subjects independent of group membership (Fig. 1B, seven peaks total). Collapsing across groups, the average latencies of the seven peaks were: (1) 6.89, (2) 10.58, (3) 15.08, (4) 21.85, (5) 30.63, (6) 38.88 and (7) 47.85 ms. Peak 1 corresponds to the response to the onset of sound, peaks 2 and 3 correspond to the transition between the stop-burst and the onset of voicing, peaks 4–6 are the dominant peaks within the frequency-following response (FFR) and correspond to phase-locking to the fundamental frequency and its harmonics, and peak 7 reflects the offset response. The latencies of these seven peaks in the grand average were then used as the basis for performing an automated peak detection procedure on the individual waveforms to find the local maximum within ±1 ms of the average latency for that peak. Following the application of the automated routine, the latencies were refined based on visual inspection. If visual observation revealed that the amplitude of the peak was not above the amplitude of the pre-stimulus period, it was coded as ‘not reliable, nr’ and excluded from analysis. For peak 1, reliability was 100% in the control group and 90% in the Amusic group. For peak 2, reliability was 90% for the control group and 80% for the

![Fig. 1. Grand-average auditory brainstem response to complex sound /da/ (cABR).](image)

© 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd

European Journal of Neuroscience, 42, 1644–1650
Amusics and controls were matched for musical age and education (Table 1). Mean age and years of musical education did not differ between groups (t(18) = 0.21, P = 0.84; t(18) = 0.68, P = 0.51, respectively). Groups were matched on pure tone audiometry: there was no main effect of group (F(1,18) = 0.11, P = 0.75) or of ear (F(1,18) = 0.51, P = 0.82), nor significant interactions. Average latency of click-evoked wave V was comparable between groups (t(18) = 0.67, P = 0.51).

Results

Delayed brainstem responses in amusics

For the composite latency measures, there was a significant interaction between region and group (F(1,18) = 12.38, P = 0.002) but no main effect of time (F(1,18) = 0.00, P = 0.93) nor main effect of group (F(1,18) = 0.72, P = 0.40) (Fig. 2B). Post-hoc analyses revealed that the amusic group was delayed by 0.64 ms relative to the control group for the onset peaks (t(18) = 2.492, P = 0.023) but that the latency of the later peaks (FFR offset) was more comparable (t(18) = −0.764, P = 0.455).

Correlations between brainstem responses and musical ability

Musical ability assessed via the MBEA correlated with brainstem physiology (Table 2), such that higher behavioral scores mapped to greater harmonic amplitude and faster onset responses (Fig. 2C). MBEA global score correlated positively with the spectral amplitude measured at harmonics H3 and H5 (r = 0.55, P = 0.013 for H3; r = 0.77, P = 0.003 for H5). MBEA global score correlated negatively with the onset peaks (r = −0.461, P = 0.041).

Discussion

We show that fine-grained processing of sound acoustics, as captured by cABR, differs from the normal range in congenital amusia. We find decreased spectral encoding and slower onset responses in amusics compared with matched controls. In addition to differences between groups, these neural variables correlated with musical ability, with harmonic coding being weaker and responses becoming more delayed with an increasing severity of amusia (Fig. 2A and B). This neural profile of amusia mirrors what has been observed in musicians, such that the aspects of sound encoding that are enhanced in trained musicians (Musacchia et al., 2007, 2008) appear to be depressed in amusics compared with non-musician controls. Taken together, the results suggest that gradients of musical ability are reflected in the cABR.
If the cortical auditory processing centers are compromised, this could interfere with normal corticofugal feedback to ultimately negatively affect how auditory signals are processed in the brainstem. Indeed, there is evidence indicating that experience-dependent plastic changes can be observed in the cortical areas before they can be seen in the auditory brainstem in rodents (Lu et al., 2014). In the case of amusia, we propose that cABR anomalies may result from the impoverished fronto-temporal connectivity found in this population (Loui et al., 2009; Hyde et al., 2011), which over a lifetime has compromised subcortical auditory processing through faulty top-down feedback, impacting specific aspects of sound processing in the brainstem.

It is interesting to note that the subcortical anomalies found in the auditory brainstem responses in amusia correspond to the components that are most sensitive to musical experience, namely harmonic encoding and response timing (Skoe & Kraus, 2013; reviewed by

Table 2. Correlations among dependent variables

<table>
<thead>
<tr>
<th>Brain behavior</th>
<th>F0</th>
<th>H2</th>
<th>H3</th>
<th>H4</th>
<th>H5</th>
<th>Onset peaks</th>
<th>FFR-Offset peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>$r = -0.29$</td>
<td>$r = 0.25$</td>
<td>$r = -0.38$</td>
<td>$r = -0.51$</td>
<td>$r = 0.22$</td>
<td>$r = -0.153$</td>
<td>$r = 0.158$</td>
</tr>
<tr>
<td>$P = 0.214$</td>
<td>$P = 0.283$</td>
<td>$P = 0.097$</td>
<td>$P = 0.091$</td>
<td>$P = 0.493$</td>
<td>$P = 0.518$</td>
<td>$P = 0.507$</td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>$r = -0.08$</td>
<td>$r = -0.38$</td>
<td>$r = -0.29$</td>
<td>$r = 0.06$</td>
<td>$r = 0.34$</td>
<td>$r = 0.197$</td>
<td>$r = 0.054$</td>
</tr>
<tr>
<td>$P = 0.724$</td>
<td>$P = 0.103$</td>
<td>$P = 0.213$</td>
<td>$P = 0.845$</td>
<td>$P = 0.273$</td>
<td>$P = 0.406$</td>
<td>$P = 0.820$</td>
<td></td>
</tr>
<tr>
<td>MBEA global</td>
<td>$r = 0.04$</td>
<td>$r = 0.02$</td>
<td>$r = 0.55$</td>
<td>$r = 0.52$</td>
<td>$r = 0.77$</td>
<td>$r = -0.461$</td>
<td>$r = 0.121$</td>
</tr>
<tr>
<td>$P = 0.862$</td>
<td>$P = 0.942$</td>
<td>$P = 0.013$</td>
<td>$P = 0.081$</td>
<td>$P = 0.003$</td>
<td>$P = 0.041$</td>
<td>$P = 0.612$</td>
<td></td>
</tr>
</tbody>
</table>

Significant correlations are shown in bold type.
Strait & Kraus, 2014). These aspects may be particularly sensitive to regular experience with music. While amusics are not musically deprived, they certainly have impoverished musical experiences by refraining from engaging in musical activities such as singing and dancing. Another, not mutually exclusive explanation is that our findings are the result of impaired top-down attentional monitoring (originating from the attentional hubs located in the frontal lobes). There is substantial evidence that backward propagation from the inferior frontal gyrus to the auditory cortex is dysfunctional in amusics (Hyde et al., 2011; Albouy et al., 2013). This poor fronto-temporal connectivity may compromise normal shaping of auditory responses in both the auditory cortex and the brainstem. Likewise, dyslexic participants show a comparable cABR profile to the amusia group, which has been suggested to result from a similar top-down mechanism (Banai et al., 2009; Chandrasekaran & Kraus, 2012; Kraus & Nicol, 2014).

Domain generality of auditory brainstem anomalous response

This study used a speech stimulus to probe subcortical processing in amusia. Our results are consistent with prior findings showing mild impairments in amusia for processing speech stimuli. A mild deficit in processing intonation has been documented in both non-tonal and tonal language-speaking amusics (Patel et al., 2008; Hutchins & Peretz, 2012; Liu et al., 2012). This issue of domain transfer in amusia, however, deserves further attention and could be addressed using directly comparable speech and music stimuli (e.g. Musacchia et al., 2007). Studying cABR in tone-language amusic populations may allow vocal and musical features to be more directly contrasted. Domain-transfer effects may reflect that music requires more precision than speech in the processing of timing and periodicity. This precision may drive experience-dependent plasticity in subcortical networks that process such features and that overlap across domains (Patel, 2011, 2014). The mechanism that enhances precision of auditory brainstem processing may be less well tuned in non-musicians than in musicians and even less so in amusics.

A subcortical deficit to be remediated?

Subcortical processing can be altered by short-term training (Song et al., 2008; Carcagno & Plack, 2011; Anderson et al., 2013b; Tierney et al., 2013). Relevant to the current study are data showing that short-term training can improve subcortical response timing in children undergoing musical training (Tierney et al., 2013; Kraus et al., 2014) and older adults who have participated in auditory training (Anderson et al., 2013b). This raises the question of whether similar training paradigms might prove beneficial in amusia. Attempts of musical rehabilitation either through music exposure or vocal training in amusia have shown little to no improvement (Anderson et al., 2012a; Mignault-Goulet et al., 2012), suggesting that training might not be sufficient to overcome lifelong cortical changes that led to the subcortical deficit in the first place.

Limitations and future directions

We contrasted two groups of participants who were differentiated based on their musical abilities (MBEA scores). In each group, there was dense clustering of MBEA scores, with a clear separation between the groups. Expanding the dataset to include a wider range of performance that samples the full continuum of musical scores is necessary to better understand how fine gradients of musical abilities are reflected in the auditory brainstem.

This study focused exclusively on subcortical processing of sound. To further elucidate the link between cortical and subcortical correlates of congenital amusia, future studies should take advantage of methodological advances that allow cortical and subcortical activity to be recorded simultaneously (S. Nozaradan, M. Schönwiesner, L. Caron-Durocher & A. Lehmann, unpublished data; Krizman et al., 2014).

The present study opens the door to a more systematic evaluation of auditory brainstem processing of complex sounds in congenital amusia in children and young adults, using a cross-sectional or longitudinal design. This would help to reveal whether subcortical anomalies manifest differently at different points in an amusic’s life. By tracing how brainstem function changes as a function of both age and experience, the mechanisms underlying our reported effects can be better delineated.

Acknowledgments

This research was supported by the Knowles Hearing Center (N.K.), and by grants from the Canadian Institutes of Health Research and from the Canada Research Chairs program to I.P. We thank Mihaela Felezeu and Nicolas Robertaille for their help with data collection.

Abbreviations

ANOVA, analysis of variance; cABR, complex auditory brainstem response; EEG, electroencephalogram; FFR, frequency-following response; MBEA, Montreal Battery of Evaluation of Amusia.

References

